Python 開発環境の構築で初心者にAnacondaはおすすめしない理由

※この記事は、2025年時点の学習環境と実務経験をもとに内容を整理しています。

こんにちは、皆さん。
今日はPythonの実行環境構築についてお話しします。

Python の環境構築って、本当に大変ですよね。
Python をこれから始めようと思ったとき、最初の壁になるのが 「環境構築」 だと思います。

  • どのインストーラを入れればいいの?
  • よく聞く “Anaconda” は本当に必要?
  • インストールしたのに動かない…
  • 重たい、わかりにくい、アンインストールも面倒…

そんな声をたくさん聞きます。

そこで今回は、初心者が直面しがちなアナコンダの問題点(落とし穴)とその解決策、さらにおすすめの代替環境構築方法について詳しくお伝えします。

この記事では、私が多くの初心者の方をサポートしてきた経験から「なぜ Anaconda をおすすめしないのか」
そして「もっとシンプルで軽くて失敗しない環境の作り方」をお伝えします。

環境が整うだけで、技術の理解も作業スピードも驚くほどスムーズになります。
目次

なぜ Anaconda をおすすめしないのか?

インストールが重い・時間がかかる

Python 初心者の環境構築なのに、数GBの巨大パッケージを入れる必要はありません。

パッケージが“自動で大量に入る”ため把握が難しい

初心者の方ほど「何が入っているか分からない」状態になり、後からトラブルの原因が追いにくくなります。

アンインストールが大変

“いざ消したい”と思っても、フォルダがあちこちに散らばりがちです。

「学習には不要な機能」が多い

Jupyter やデータ分析系のライブラリは便利ですが…
最初は扱う必要がありません。

解決策:「公式 Python」+「仮想環境(venv)」で十分

実際、私は
企業サポート・在庫管理システム開発・ロボット制作
すべてこの構成で進めています。

✔ 軽い

インストールは数十秒で完了。
最初の一歩がとてもスムーズになります。

✔ シンプル

必要になったライブラリだけを追加する方式なので、
「何が入っているか分からない」状態になりません。

✔ トラブルが少ない

“Pythonをまだ使い慣れていない人ほど” この恩恵が大きいです。
無駄がなく、環境が壊れにくいため、作業に集中できます。じゃあ、どうすればいいの?って思いますよね。アナコンダに代わるシンプルな環境構築方法を紹介します。これなら初心者でも簡単に設定できて、Pythonの学習をスムーズに進めることができます。

公式Python + venv構成のシンプル構造図

環境構築で迷う時間がなくなると、学習そのものの手応えが一気に変わります。

Anaconda と公式 Python の違いをシンプルに比較

どちらが良い悪いではなく、「初心者にとって扱いやすいのはどちらか」 という視点で比較します。

項目Anaconda公式 Python(+venv)
インストール容量かなり大きい小さい
動作の軽さやや重いとても軽い
ライブラリ管理自動で大量に入る必要なものだけ入る
トラブル発生率やや高い低い
初心者向け
データ分析特化○(必要に応じて追加)

Pythonの基礎を学びたい/自動化をしたい/Web開発をしたい
こういう用途であれば、公式 Python のほうがスムーズに成長できます。

「目的別」どの環境を選べば良いか?

読者の目的によって、最適な選択は少し変わります。

目的おすすめ環境理由
Python の基礎を学ぶ公式 Python+venv軽くて迷いにくい
Webアプリ・自動化公式 Python+venv現場で最もよく使われる構成
機械学習・データ分析Anaconda / Miniconda重いライブラリを大量に使うため
大学の授業で指示がある指示に従う授業環境と合わせる必要がある

初心者の方が “なんとなく” で Anaconda を選ぶ必要はありません。
まずは軽い環境で十分です。

シンプルな環境構築の手順(最短で迷わない)

つまずきやすいポイントを先回りして解決すると、作業時間は何倍にも短縮できます。

公式 Python をインストール

まず、Pythonの公式サイトから最新のインストーラーをダウンロードしましょう。
この方法は非常に簡単で、初心者でも迷わずに設定できますよ。
Windows の方は「Add Python to PATH」にチェックを忘れずに。

プロジェクト用のディレクトリを作成し、そこに移動します。

Bash
mkdir myproject
cd myproject

仮想環境(venv)を作成する

Pythonの標準ライブラリである`venv`を使って仮想環境を作成します。これにより、プロジェクトごとに依存関係を分離し、パッケージの競合を防ぐことができます。

Bash
python -m venv myenv   # myenv の部分は自分の好きな名前でOKです。

仮想環境を有効化する

Bash
 Windows
myenv\Scripts\activate

 Mac/Linux
source myenv/bin/activate

必要なライブラリだけインストール

Bash
pip install requests
pip install flask

本当に必要なものだけ入るので環境が汚れにくいです。
必要なライブラリをインストールする場合、仮想環境をアクティブにした状態でpipコマンドを使います。

パッケージ確認はこちら

Bash
pip list

VSCode を使うと、初心者でも Python コードを快適に書くことができます。

VSCode を使うと、初心者でも Python コードを快適に書くことができます。

  • 仮想環境を自動で認識
  • エラーが分かりやすい
  • 補完が強力
  • 無料で導入が簡単
  1. VSCode をインストール
  2. 「Python」拡張機能を追加
  3. ターミナルから仮想環境を有効化して作業

これだけで快適な学習環境が整います。

\ここまでのまとめ/
Anaconda は便利だけれど、初心者には少し重い。
だからまずは “公式Python+venv” の軽い構成が最適。

Python環境づくりで「あると安心なアイテム」

やさしく学べるPython入門書

環境構築から基本文法まで、順番に丁寧に解説してくれる1冊です。
「まず何から勉強すればいいか分からない…」という方は、この本があると安心です。

タイピングしやすい静音キーボード

インデントを多用するPythonでは、キーボードの打ちやすさがかなり大事です。
長時間の学習でも指が疲れにくく、マンションでも使いやすい静音タイプです。

長いコードでも楽にスクロールできるマウス

私も2016年からずっと使っていますが、長いコードをスクロールする時のストレスがゼロになります。

道具を少し整えるだけで、Python学習のストレスがぐっと減ります。
ここから先の VSCode の設定や学習も、よりスムーズになりますよ。

すでに Anaconda を入れてしまった場合の対処法

「もう入れちゃったんだけど…」
という方も心配いりません。移行は可能です。

不要な環境やパッケージを削除

まず、アナコンダ環境を整理し、不要なパッケージや環境を削除しましょう。

Bash
conda env remove -n 環境名
conda remove --name 環境名 --all

Anaconda をアンインストール

次に、アナコンダ自体をアンインストールします。

Windowsの場合

コントロールパネルから削除

Mac:

Bash
rm -rf ~/anaconda3

公式 Python で環境を再構築

前述の手順でやり直せばOKです。

プログラムのコードはAIが助けてくれますが、環境構築は難しい

最近では、プログラムのコードを書く際にAIのサポートを受けることができます。例えば、ChatGPTのようなツールを使えば、プログラミングに関する疑問を解決したり、コードの例を提供してもらったりすることができます。しかし、Pythonの実行環境を構築するという作業は、依然として手作業が必要であり、初心者にとっては大きな壁となることが多いんです。

環境構築は、システムの設定やパッケージのインストール、依存関係の管理など、多くのステップを踏む必要があります。これらのステップは、一見すると単純そうに見えますが、実際には多くのトラブルシューティングが必要となる場合があり、初心者が自力で解決するのは難しいことが多いです。

実際の活用例(環境構築後にできること)

Web スクレイピング

仮想環境を作成し必要なパッケージを入れてデータ収集ができます。

データ解析

pandasmatplotlib を入れるだけで、グラフ化やデータ分析が可能になります。

どちらも、複雑な Anaconda を使う必要はありません。

よくある質問

Q1. なぜアナコンダを避けるべき?

重くて複雑で、「今どこで何が起きているのか分からなくなりやすい」のが理由です。

Q2. 仮想環境のメリットは?

プロジェクトごとに設定を分離でき、失敗しても影響範囲を小さくできます。

Q3. VSCode の良いところは?

軽くて分かりやすく、初心者が最初につまずきにくい設計です。

ここで一度、環境選びを整理してから進むと、この先で迷いにくくなります。

Anacondaを使わない、という判断ができたあと、次に迷うのは「じゃあ、何を選べばいいのか」だと思います。
私自身がいくつか試して、ここで一度落ち着こうと決めたPython環境を別の記事にまとめました。
→ Anacondaで迷った人が、次に選ぶべきPython環境はこちらです。

まとめ:はじめての人でも安心して環境構築できます

Anaconda は多機能ですが、初心者には少し重く、遠回りになりがちです。
まずは 公式 Python + venv という軽くてシンプルな構成を試してみてください。

環境が整えば、Python の学習は一気に楽しくなります。
焦らず、自分のペースで進めていきましょう。

頑張りましょう!

※ 補足:もし「一人で進めるのが不安な場合」

ここまで読んで、「考え方は分かったけれど、やはり一人では不安」と感じる方もいると思います。

そういう場合は、環境構築や学習の順序をサポートしてくれるプログラミングスクールを使うのも一つの選択肢です。

私自身は独学を選びましたが、

  • 期限がないと続かない
  • 質問できる相手が欲しい
  • 一人で調べ続けるのがつらい

という人には、スクールの方が合うこともあります。

同じ悩みを繰り返さない “最短ルート” を手に入れませんか。
目次